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ABSTRACT

In this work some complex ray configurations are treated using a
simple ionospheric model, namely, spheres concentric with a spherical
earth. Other simplifying assumptions are also made. Methods for
finding takeoff angle of ray and length of ray path are given.
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Complex Ray Configurations in
an Ionosphere Composed of Spherical Shelis

INTRODUCTION

Oftentimes a ray configuration is so complex that only the simplest of ionospheric models can be employed
successfully in computing length of ray path and delay time. Of course when such simple models are used,
the computed delay time is only an approximation. However, in many instances an approximation is all

that is needed.
In this work some complex ray configurations are treated using a simple ionospheric model, namely,
spheres concentric with a spherical earth, Other simplifying assumptions are also made.

Ray Configurations for an Ionosphere Composed of Spherical Shells

I.  Assumptions

The following assumptions are made:
1. The earth is a sphere of radiusr,
2. The Ej layer of the ionosphere is a sphere, concentric with the earth, of height h; above the

earth’s surface. '
3. All reflections are such that the angle of incidence is equal to the angle of reflection.

4. The ray path is composed of straight line segments.

II.  Ray Configuration

The ray configuration, earth-Ej layer-earth, will be called a hop to the F; layer,
The following ray configuration is considered:

nj hops to the E; layer,

n3z hops to the Ep layer,

ny hops to the Ey, layer, where p=1,2, 3, .. .; the n; are non—neggtive integers.
In most problems p does not exceed 2, and the ionospheric layers considered are the E, Fy , and Fy
layers, The notation Ej is used simply for mathematical convenience.

II{. Statement of Problem
Compute the total distance that the ray travels for the above configuration.

IV. Mathematical Model

Let £; be the angle made by the ray on reflecting off the Ej layer (Fig. 1).
Let T and L be, respectively, the points of takeoff and landing of the ray. (T and L being on the earth’s

surface).
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E; layer

Fig. 1 — Earth~E; layer —earth reflections.

iety be the angle between T and L.
Let € be the takeoff angle of the ray.
Let ¢ be the totai length that the ray travels in going from T to L.

1t is agreed that all angles are measured counterclockwise.

Now consider the polygon formed by the ray configuration and the radii of the earth (Fig. 11
Since the sum of the interior angles of a polygon is equal 10 (n - 27, where n i3 the number of vertices
of the polygon,

P P L
¢+ Zg—-ﬁ-e) e ) 0k +<*}+Z“i)(ﬁ+2€) =21} a;
i=1

i=1 =1

Solving this equation for € gives

i=1

13 P
1 H
€ = ‘2_{(?7 - %)- NI‘:Z‘; nigi]’ where N = Z: 4.

Applving the law of sines to the {typical} triangle OTP (Fig. 1) gives

¥

£ = Zarcsin (K; cose) where K =

r+hy°
- ! AWEE in (K; ¢ 1
Hence €= Fir- - ﬁ‘gﬂiamﬂﬂ( ; €08 €). {1y
If only one laver, whose height is h, and n hops to this layer are being considered, equation {1}
reduces te
€= L 1 are sin{ - cOS €
2 oy r+h
) I T @
= - - +
ot arc Sm(ﬁ-h cos e) 3 (e 2n)
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Taking the sine of both sides gives

€ = arc fan

Further, for this case a simple application of the law of cosines gives

d=2n lﬁz + (r+h)? - 2r(r+h)cos%.

Unfortunately, in general (i.e., when p > 2) equation (1) cannot be solved for ¢ in closed form.

V. A Least Upper Bound for ¢

Let a fixed ray configuration be considered. Clearly, e = 0 if and only if ¢ = max ¢. Substituting
¢ = {} in equation (1) gives

4
_ 1 max ¢ 1 ) —
0= 5(7: - =5 )- N—i};—‘; n; arc sin Kj.

P
Hence, maxy = }: nj(m - 2 arc sin Kj).
i=1
If ¢ > max g, then the ray would have to pass through the earth; so if 0 < ¢ < max ¢, then
0<e<nf2.

VI. Numerical Solution

Since equation (1) cannot, in general, be solved for e in closed form, numerical methods are
appealed to.

, P
Set g(e) = %(‘:‘T - % )— %Z n; arc sin (Kj cos €).

i=1

The following is a well known theorem: A sufficient condition for the convergence of the sequence
of constants ¢q, €1, €2, . . ., which is given by the recursion formula

€nt1 = g(en), n=0,1,2,.. .,
is that g'(¢) and a constant K exist such that
lg'(e)l < K < 1 holdsforalle.

(Here g is an arbitrary constant and g(e) is assumed to be differentiable on the real line.)
‘Further, this sequence converges to the only real root of € = g(e).
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1-cos? e
i ’V 1-Kf cos? ¢

[
I'}hi'

, /1 -cos?
Since 0 < 7 Kcocsosf o < 1 on the real line,
- K bl

P
ig'(e) < éz nK; < 1 on the real line.

i=t

Now gle)= *

T

1
N

P
where N=} n, K; =
=1

|

In the iterative scheme given above any ep may be used.

VIL. Length of Ray Path
Applying the law of sines to the triangle OTP (Fig. 1) gives

d; T+hy

= 3

)l

where dj is the length of side TP,
Using sin /2 = Kjcos e,

G =\/2fhi + hg +1lsin2e - rsine

is obtained,

Hence,

p P
d=12 Zni\/z;hi + hiz + dsinZe - 2rsmez‘:ni.
=1

=1

where 4 is the total length that the ray travels in going from T to L.

VHI. Flat Earth Approximation

An estimate for e may be obtained by assuming a flat earth and flat ionospheric layers. A short com-
putation gives
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9 P
€ ~ arctan|— ) nhs|.
L]

As ¢ goes to 0, this estimate will approach the value of € computed by iteration.

IX. FEarth—E;.Layer—E| Layer—Ez Layer—---—E; Layer—Earth Reflections

The ray configuration previously considered is now generalized, but for only 2 jonospheric layers
E; and E; with hy <h,.

The ray configuration, earth—Ej layer—Ey layer—Ej layer— - -—Ej layer—earth, withp reflections off
the E; layer and p - 1 reflections off the Ey layer will be called a hop of order p to the E layer, p = 2.

The following ray configuration is now considered:

n hops to the E layer,
m hops to the Ej layer,
ny hops of order 2 to the E layer,
n2 hops of order 3 to the E3 layer,

n, hops to order  + 1 to the Ep layer.

X. Mathematical Model

Let £ be the angle made by the ray on reflecting off the E; layer.
Let £9 be the angle made by the ray on reflecting off the E4 layer.

Let £4 be the angle made by the ray on reflecting off the ¥y layer in going from and to the Ep layer
(see Fig. 2). '

Fig. 2 — Earth—E; layer—E, layer—E. layer— -+ — E. layer —earth reflections.
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By considering the polygon formed by the ray configuration and the radii of the earth (Fig. 2)

and noting that the sum of the interior angles of this polygon is equal to (f ~ 2}, where 7 i3 the number of
vertices of the polygon,

i
¢+ 2(e+%>+ nE; + még +(Z (i+i}ni)£2

=i

+ (}f ini)(h-’g‘g) + (n+m-— I+ _}#:ni)(?r + 2¢)

i=1 =1

# #
=<n+m+z(2i+1}n;+ﬁ+m—i+ Zni+3—2)zr

i=1 i=1

is obtained,
Solving this equation for € gives

1 1
e= zfn- £ - 3(Er + Rakr - M),
n+tm+ ny
i=t
“ #
m+ J G+ Dy 2 i
n i=1 . =t
where y T —— Ay = —/ Ay =
I K 2
nt+m+ )6 n+m+ )y n+m+ )

i=1 =1 =1

Applying the law of sines to trangle OTP (see Fig. 2) gives

£1 = 2arcsin (K; cose), where Ky =

A similar computation gives

£ = 2arcsin (Ko cose) where Ky

Applying the law of sines to triangle ORQ (see Fig, 2) gives

. &3 . &2
sm( -5 sin =%
r+hy r+hy *

Hence, sin

r+h
‘%3- 2 _T cose = Ky cose

N r+hy r+hp

and so §; =£3.
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A short computation then gives

= 1 4
£ 5 n - e
n+m+).n
i=1
u u
n- 7} in m+ 3 (i + Dy
izl i=1 .
- ————— arcsin (Kq cose) + -——I—-M—arc sin (K3 cos €) . (2)
u
ntm+ ) n n+m+)

i=1 i=1
u
This equation can be solved for € in closed form only if K; =K or if n =) | in;. The case Ky = K, was treated
i=1

M
in section IV. The casen= ) | inj can obviously be treated in the same way.
i=1

Set the right member of equation (2} to g(e). Then

H u
n-Z:ini > m+2:(i+l)ni ’
=1 1-cos? e i=1 1-cos* ¢
)=t ———— K + K ]/.______
8(e) u 1 l-Kllco?[e 3 2 1—K220082€
n+m+z nj n+m+Zni

i1 i=1

1-coste 1-cos? e
L = — = — e
Let L1(e) l/ 1-K2cos? e’ La(e) l/ 1-Ky2 cos? ¢

Without loss of generality,

[ M
n-2.in; m+) (i+ Dn;
. i=1 i=1
g0 = ———— Kl + —————Klp
n+m+Zni n+m+Zni

i=1 i=1

(otherwise consider -g'(e)). Now 0<Ky <K; <1, 0<Ly;<L; <1, s0 0<KyL, <KjL; and

M #
m+} i+ Dy m+) (i+ Dy
=1 1
0< —‘——;— KoLy < —‘——”—-—KlLl.
n+m+) n+m+ ) n
i=1 i=1
7
n -Z ing
. i=1
Adding —-——l——u— KjL; toeach member of this double inequality gives
n+m +)

i=1
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a
n -Zmi
i=

——Iy—KiLl < g€ < KLy < Ky < 1.

n+tm+} n
i=1

1
ifan- Ziﬂi > 0, then clearly 0 < g'(¢e) < Ky < 1. Further, a short computation will verify

=1
that if
u " B
n -} iny <0, then igi(e)l < KyLy < Ky < I ifandonlyif J | in; < 2n + m + 2 .
i=1 i=1 =1
e B M “
Note that J in; > 2n + m + ) n; implies ) | in; > n,ie., 8 - ) iy < 0. Unfortunately, it
i=1 =1 i=1, i=1

is not true that lg'(e}l < Ky < 1 for thiscase. However, there is some consolation in that the case

A u
n=m=0, ny =1,n;=--+=n, =0, which is of prime interest, does satisfy z g < 2ntm+ Z A
=1 =t

# H o u
Hence if n—Zin; =0 orif n~Ziﬂi < 0 and Ziﬂi < zn+m+2n%, then the numerical

i=1 =1 i=1 =1

solution of equation (2} is the same as that for equation {1). 1In fact {for the case p = 2} equation {1} can be

obtained from equation (2} by lettingny =ny =+ .. =10, =0,
As before
K # M
maxy = {n+m+ Zni>7r - 2[({1—Zini)arcsin1{1 + m+Z {i + 1)my | arc sin Ko 1.
i=t i=1 i=t

Let dy be the length of TP, dg be the length of 8§Q, and d3 be the length of RQ (see Fig. 2}.
A short computation (see section VII) gives

d; ]/ErhI +hi + sin? e ~rsine,

dy

1/21!12 +0f + Zsinfe -rsine.

Applying the law of sines to triangle OQR (see Fig. 2) gives

ds _ r+ha - t+ha
(& _& - £3 . §3
Sm(‘z‘ 20 A G2 s
. £ 3 . £ L
i = = _—= =
Bu sitt 3 TR cose,  sin S in cos €,
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Combining these three equations gives

d; = (r +ha)V1 —K22 cos2 e - (r+h)V1 —K12 cos? €.
And so
u u
d= Z[Hdl + (m+Zni)d2 +(Z ini)dg )
i=1 i=1

where d is the total length that the ray travels in going from T to L.
The flat earth approximation for e is given by

2 u W
arc tan —[(n - Z ini)hl + (m +Z: i+ l)ni)hz]
i=1

4 i=1



